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Abstract. In light of recent calls for further validation of structural models, this paper
evaluates the popular dynamic quality ladder (DQL) model using a nonrandom holdout
approach. The model is used to predict data following a regime shift—that is, a change in
the environment that produced the estimation data. The prediction performance is evalu-
ated relative to a benchmark vector autoregression (VAR) model across three automotive
categories and multiple prediction horizons. Whereas the VAR model performs better
in all scenarios in the compact car category, the DQL model tends to perform better on
multiple-year horizons in both the midsize car and full-size pickup categories. A supple-
mentary data analysis suggests that DQL model performance in the nonrandom holdout
prediction task is better in categories that are more affected by the regime shift, helping
to validate the usefulness of the dynamic structural model for making predictions after
policy changes.

History: Accepted by Matthew Shum, marketing.
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1. Introduction
Structural dynamic oligopoly models have enabled re-
searchers to provide theoretically grounded answers
to such previously intractable questions as how com-
petition spurs innovation (Goettler and Gordon 2011,
2014), how environmental regulation affects entry
and market power (Ryan 2012), and how demand-
smoothing fiscal policy influences market structure
(Collard-Wexler 2013). This literature has mostly relied
on the “dynamic quality ladder” (DQL) framework
introduced by Ericson and Pakes (1995). The majority
of papers that investigate firms’ dynamic investments
have followed Ericson and Pakes (1995) closely.
The usefulness and appeal of structural dynamic

oligopoly models are well established. However, there
has been substantial recent debate on the general valid-
ity of structural empirical work: untested behavioral
assumptions may produce misleading parameter esti-
mates and mistaken policy experiments (e.g., Chinta-
gunta et al. 2006). For example, Angrist and Pischke
(2010) have called for further validation of structural
models, focusing particularly on the importance of
model uncertainty. Rust (2014) pointed out that a key
element in building confidence in a structural mod-
eling framework is to rigorously validate the model’s
predictions.1 As Keane (2010, p. 18) noted, the struc-
tural literature “[has] tended to pay little attention to
the issue of model validation.” The structural dynamic

oligopoly literature, in particular, has not emphasized
empirical model validation.2

The purpose of the current paper is to evaluate the
dynamic quality ladder framework using the nonran-
dom holdout validation approach. Specifically, we fol-
low Keane and Wolpin’s (2007) suggestion to evaluate
the model’s ability to predict data following a “regime
shift”—a change in the environment that produced the
estimation data.3 The idea is simple: if a model pro-
vides good forecasts for data produced by a different
regime than the data used for estimation, the model
can be judged to reliably predict the impact of large
changes in the environment.

We do not advocate evaluating any class of model
based on holdout performance alone. However, hold-
out validation has played a rare but important role
in building confidence in several classes of structural
models. For example, McFadden et al. (1977) estimated
a random utility model that produced famously accu-
rate predictions of demand for a new transportation
service. Ailawadi et al. (2005) estimated a structural
manufacturer–retailer Stackelberg model using data
prior to a change in manufacturer pricing policy and
found that it predicted post-policy-change data bet-
ter than two alternative models. Misra and Nair (2011)
estimated a dynamic structural model of individual
salesperson effort allocation and then shifted sales-
person incentives in a field experiment. They showed
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that, as predicted, the recommended compensation
plan led to a 9% increase in overall revenue, provid-
ing face validity for dynamic agency theory. Pathak
and Shi (2015) estimated a discrete choice model of
Boston families’ public school choices and predicted
how household choices would change after a policy
intervention. They have promised to report prediction
accuracy after collecting postintervention data. Raval
et al. (2016) evaluated the predictive accuracy of differ-
ent discrete choice demand models using natural dis-
asters that unexpectedly removed hospitals from con-
sumers’ choice sets. Their holdout predictions showed
the importance of flexibly accounting for consumer
heterogeneity and that no single model dominates all
others in all cases.
All of these studies estimated structural models

using data prior to a regime shift or a policy change,
predicted behaviors for the sample after the regime
shift, and compared predictions with the actual behav-
ior observed following the regime shift. The regime
shift provided a natural (i.e., “nonrandom”) opportu-
nity to separate the estimation sample from the valida-
tion sample. We contribute to this literature by evalu-
ating structural dynamic oligopoly model predictions
after a regime shift.

The context we consider is the U.S. automobile mar-
ket in three categories: compact car, midsize car, and
full-size pickup. The price of gas rose to a record high
of more than $4 a gallon in 2008, increasing consumers’
postpurchase automobile costs and reducing automo-
tive demand to varying degrees in accordance with
how much each category was affected by the gas price
change (Meinero and Rooney 2008). Full-size pickup
sales fell 20% in 2008, midsize car sales fell 11%, and
compact car sales fell 1%. The change in fuel cost pro-
vides a regime shift at which we separate estimation
data and nonrandom holdout validation data.

We specify a dynamic quality ladder (DQL) model
in which automakers invest in perceived product qual-
ity to maximize the net present value of current and
future profits.4 More investment today increases the
chance of realizing a quality improvement in the next
period, but the outcome of investment is stochastic. We
estimate the model using the mathematical program-
ming with equilibrium constraints (MPEC) approach
of Su and Judd (2012). We use data up to 2007 to esti-
mate the model, conduct a counterfactual to predict
the perceived quality and market shares for a four-
year period from 2008 to 2011, and then compare the
model predictions to the observed market outcomes.
The nonrandom holdout performance of the DQL
model is evaluated relative to a benchmark: the vector
autoregression (VAR) model, a common approach to
modeling the joint evolution of multiple related time
series. All predictions are made by sampling from the

asymptotic distributions of the parameter estimates to
account for estimation error.

Predictions are made over two different time hori-
zons: one-year horizons in which year t data are used
to predict the perceived quality and market shares in
year t+1 andmultiple-year horizons in which all hold-
out predictions are based on the observed market out-
comes in 2007. Multiple-year horizons are important
for policy makers who are interested in understanding
policy impacts that last longer than one year.

The empirical results suggest that the DQL model
performs best, relative to a benchmark vector autore-
gression, in multiple-year horizon predictions in the
full-size pickup and midsize car categories. A supple-
mentary analysis of geospatial variation shows that
new vehicle sales in these two automotive categories
are more susceptible to changes in gasoline price than
those in the compact car category. Taken together, the
results suggest that the structuralmodel is better suited
for prediction purposes over multiple-year horizons in
settings where the regime shift has larger effects.

2. Relationship to Prior Literature
The theoretical concept of Markov perfect equilibrium
(MPE) was developed to understand dynamic inter-
actions in oligopoly settings (Maskin and Tirole 1987,
1988a, b). From this concept, Ericson and Pakes (1995,
hereafter referred to as EP) proposed an empirical
framework to model an oligopolistic market over time:
each competing firm can change its “state” (e.g., prod-
uct quality) through investment, and uncertain out-
comes of investments determine the evolution of the
industry state. Most articles studying industry dynam-
ics of firm investment have followed the EP framework
closely.5 It has been adapted to a variety of settings,
including inpatient hospital services (Gowrisankaran
and Town 1997), mergers (Gowrisankaran 1999), capac-
ity accumulation (Besanko and Doraszelski 2004,
Besanko et al. 2010), advertising policies (Tan 2006,
Qi 2013), research joint ventures (Song 2011), net-
work effects (Markovich 2008), quality innovation in
the PC microprocessor industry (Goettler and Gordon
2011), and innovation in the global automobile indus-
try (Hashmi and Van Biesebroeck 2016).6

The primary challenge in estimating the EP frame-
work is computational: it requires solving for MPE
strategies at every point in the state space. The size
of the state space grows exponentially with the num-
ber of firms and possible states, leading to a curse
of dimensionality; see Doraszelski and Pakes (2007)
for a review. This computational burden has limited
the empirical work in this literature to mostly rely on
computing MPE based on parameters calibrated using
available data and simulating counterfactual experi-
ments to understand the impacts of policy changes.
To the best of our understanding of this literature,
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only a limited number of published studies have esti-
mated the EP framework while solving for the full
equilibrium. Gowrisankaran and Town (1997) were the
first to adopt the Pakes and McGuire (1994) algorithm
to compute MPE while estimating dynamic structural
parameters using a nested fixed point approach. They
examined hospitals’ quality provision strategies in a
model with endogenous patient selection of hospi-
tals and evaluated several counterfactual experiments
such as changes in Medicare reimbursements and non-
profit taxation policy. Goettler and Gordon (2011) used
data from the PC microprocessor industry to esti-
mate a DQL model under which both consumers and
firms are forward looking. They found that compe-
tition lowered innovation rates relative to monopoly
but still improved consumer surplus through lower
prices. Borkovsky et al. (2017) solved for equilibrium
in a DQL model extension in which firms use advertis-
ing to build brand equity.7 They found that the brand
equity depreciation rate plays a key role in determining
the value of the brand as well as the value of the firm.
Like Borkovsky et al. (2017), we apply the MPEC esti-
mation approach of Su and Judd (2012), which reduces
the computational burden of estimation but still solves
for the full equilibrium.

3. Models and Estimation
Firms make investment decisions to compete in a qual-
ity ladder. Perceived quality (or quality, for short) is
defined as consumers’ perceptions about the product,
including preferences for objective product character-
istics as well as subjective attitudes about the product.
We define quality in this way because (1) product char-
acteristics such as design, brand equity, and perceived
reliability are difficult to measure but may be impor-
tant predictors of demand; and (2) it is the consumer
perception of product quality that determines prefer-
ence, satisfaction, loyalty, and profitability of purchase
(Mitra and Golder 2006).
Each product’s perceived quality in each year is esti-

mated to be the demand intercept that rationalizes its
observed market share, conditional on all prices and
products in the market, and is denoted by ω̃. Note that
ω̃ is continuous, but the dynamic quality ladder model
assumes that product quality is discrete; therefore, we
partition ω̃ into discrete levels denoted by ω. The esti-
mation and discretization of quality levels are not the
main focus of the paper and therefore are described
briefly in Section 4 and fully in Appendix A. Next, we
first specify the demandmodel that generates the qual-
ity estimates.

3.1. Consumer Demand
Consumer i gets utility ui jt from purchasing product
j ∈ {1, . . . , J} in year t:8

ui jt �−αTVC jt + ω̃ jt + εi jt , (1)

where TVC jt � p jt + EVFC jt is the total vehicle cost
(TVC) of product j at time t, which includes the vehicle
price, p jt , and the expected vehicle fuel cost, EVFC jt . To
construct EVFC jt , we first define the annual fuel cost,
FC jt � gpt × (VMTt/MPG j), as a function of the gaso-
line price (gp), vehicle miles traveled (VMT) per year,
and vehicle fuel efficiency (miles per gallon, or MPG).9
Then, we define EVFC jt as the net present difference
between new vehicle j’s annual fuel cost and a refer-
ence vehicle j′’s fuel cost over some horizon:

EVFC jt �

3∑
t�1

FC jt

(1+ r)t −
3∑

t�1

FC j′t

(1+ r)t , (2)

where r is the interest rate,10 the summation assumes a
three-year horizon, and the reference vehicle j′ is spe-
cific to model j. An analysis of millions of automotive
purchase records showed that 60% of new auto pur-
chases involve a trade-in, that the trade-in is typically
an older version of the same model that is purchased
new, and that median trade-in age varies across cate-
gories (five years for compact car and midsize car, and
six years for full-size pickup).

The perceived quality of product j at time t, ω̃ jt �

θj + ξ jt , is decomposed into a set of product intercepts
θj and an unobserved quality term ξ jt . Assuming that
consumer i’s idiosyncratic preferences εi jt are indepen-
dently distributed extreme value, and normalizing the
utility of the outside option to εi0t , the market share of
product j at time t is

s jt(TVCt , ω̃t)�
exp(−αTVC jt + ω̃ jt)

1+∑
k exp(−αTVCkt + ω̃kt)

, (3)

where TVCt and ω̃t are the vectors of J total vehicle
costs and qualities at time t.

3.2. Dynamic Quality Ladder Model
This section specifies a dynamic stochastic oligopoly
game in product-quality investments. We think of the
choice variable as investments in research and devel-
opment (R&D) to update product features, but it also
may reflect advertising expenditures that influence
consumer perceptions of product quality.11 The game is
played by a fixed number of firms over an infinite hori-
zon.12 Each firm j ∈ {1, . . . , J} is described by its prod-
uct’s quality level, or “state,” ω jt ∈ Ω � {1, 2, . . . , ω̄}
in each year t ∈ {1, 2, . . . ,∞}. At any point of time,
the industry is completely characterized by an “indus-
try state” vector ωt � (ω1t , . . . , ωJt), which describes all
products’ quality levels.

Firms choose prices and investments to maximize
their expected discounted profits. Investment is a dy-
namic decision because more investment today in-
creases the chance of realizing a quality improvement
in the next period. Quality is also subject to an exoge-
nous depreciation shock that is common to all firms,
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to allow for the possibility of improvement in the “out-
side option.” Prices are set conditional on the indus-
try state vector. Hence, each firm’s per-period profit is
determined by all firms’ current qualities and prices,
and it is treated as a primitive of the dynamic stochastic
game.
The timing of the game is as follows. At the start

of each time period, firms observe the current indus-
try state and simultaneously choose investments x jt to
improve next period’s quality. Next, firms compete in
the product market and simultaneously set Nash equi-
librium prices p jt to maximize per-period profits. At
the end of the period, the outcomes of the investment
and the industry-wide shock are realized, and as a
result, the industry state is updated.
3.2.1. States and Transitions. Improving product
quality is modeled as a time-consuming and uncertain
process, with a probability of success that increases
with the investment x jt . Following Pakes and McGuire
(1994), we restrict the outcome of investments, v jt , to
be either 0 (if innovation fails) or 1 (if innovation suc-
ceeds) to ensure a closed-form solution for optimal
investment. The discrete distribution of v jt is given by

v jt �


1 with probability

ρx jt

1+ ρx jt
,

0 otherwise,
(4)

where ρ > 0 represents the effectiveness of investment.
The quality state evolves as follows:

ω′jt � ω jt + v jt − ηt , (5)

where ω′jt is the realized state at the end of period t.
Firm j’s state cannot improve without investment and
may decay with the realization of the common indus-
try shock ηt . This shock may represent technological
improvements or other variables that lead consumers
to favor substitutable products. It induces positive cor-
relation among competing firms’ profits, as is often
observed in market data. Similar to most papers apply-
ing the dynamic quality ladder framework, we assume
ηt � 1 with an exogenous probability δ and ηt � 0 with
probability 1− δ.
3.2.2. Per-Period Profits. Within each time period,
conditional on the current state of the market ω, each
firm competes for a mass M13 of consumers by setting
its price, p jt , to maximize its per-period profit:

max
p jt

π jt � (p jt −mc)Ms jt(pt , ω̃t), (6)

where mc � exp(γ) is the constant marginal cost of pro-
duction across firms. Given that the per-period profits
depend only on the current prices and quality states,
we can compute all per-period profits that correspond
to equilibrium prices at every possible industry state
and take them as the primitives of the dynamic invest-
ment problem.

3.2.3. Dynamic Investment Decisions and Equilibrium.
At the beginning of each time period, firms observe
the industry stateωt and simultaneously choose invest-
ments x jt to maximize the expected discounted value
of net cash flows:

max
x jτ

E
{ ∞∑
τ�t
βτ−t(π j(ωτ) − x jτ)

����ωt

}
, (7)

where β is the discount factor14 and π j(ωτ) is firm j’s
per-period profit before deducting the investment cost
at time τ. As in EP, we focus on stationary Markov per-
fect equilibria, which are only a function of the current
state and do not depend on calendar time, so time sub-
scripts are omitted in equations hereafter in this sub-
section. The maximization problem in (7) implies that
the Bellman equation for firm j is

V(ω j , ω− j)�max
x j

{π(ω j , ω− j)− x j + βE[V(ω′j , ω′− j) |ω]},

(8)

where ω− j is a vector of all competitors’ quality lev-
els. The expectation on the right-hand side of Equa-
tion (8) is taken over the probability distribution of
both firm j’s own state and its competitors’ states in the
next time period. As shown in Appendix B, solving the
first-order conditions of the maximization problem on
the right-hand side of Equation (8) yields the closed-
form equilibrium investment policy:

x∗j(ω j , ω− j)� max
{
0,
−1+

√
βρ[W(1 | ω) −W(0 | ω)]

ρ

}
,

(9)

if W(1 |ω)≥W(0 |ω) and x∗j(ω j ,ω− j)�0 otherwise. Note
W(v j | ω) ≡

∑
ω′− j

∑
ηV(ω j + v j − η,ω′− j)q(ω′− j | ω,η)p(η)

is firm j’s expected payoff conditional on the outcome
of its investment v j �{0,1}, and q(ω′− j |ω,η) represents
firm j’s expectation of its competitors’ future states ω′− j .

A pure-strategy MPE involves value functions V(ω)
and policy functions x(ω) such that (i) given pol-
icy functions, value functions solve the Bellman
equation (8) for every firm j, and (ii) given value func-
tions, policy functions solve the maximization prob-
lem on the right-hand side of Equation (8) for every
firm j. The functional form of the state transition prob-
abilities (Equation (5)) satisfies the unique investment
choice admissibility condition derived by Doraszelski
and Satterthwaite (2010), guaranteeing that optimal
investment strategies are unique.

The quality state space must be bounded to numer-
ically solve for the MPE. Therefore, we assume ω j ≤ ω̄
∀ j, where ω̄ is the highest level of quality that any firm
could theoretically reach.15 We discuss the selection of
ω̄ in Section 3.3.3.
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3.3. Estimation
Parameters to be estimated include the static parame-
ters of the demand model and the per-period profits
{α, θ, γ, ω̃t} and the dynamic parameters {ρ, δ}.
3.3.1. Estimation of Static Parameters. It is important
to have a precise estimate of the price responsiveness
parameter in the demand model in order to separate
perceived quality from prices. We used the large, gran-
ular data set described in Appendix A.1 to estimate the
price responsiveness parameter α. Estimates of θ and
ω̃ are conditional on α̂ and estimated together with
firms’ marginal cost parameters γ using the general-
ized method of moments (GMM). First-order condi-
tions of the maximization problem in Equation (6) are
derived and used in estimating these parameters.
The estimated perceived quality ω̃ is discretized into

partitioned levels ω following the state transition pro-
cess (Equation (5)). Details of the discretization proce-
dure are described in Appendix A.2. Taking the static
parameter estimates {α̂, θ̂, γ̂} as inputs, we solve the
systems of first-order conditions derived from Equa-
tion (6) for the Bertrand–Nash equilibrium prices at
every possible industry state ω and then compute each
firm’s equilibrium per-period profits π(ω) that corre-
spond to those equilibrium prices. Finally, the equi-
librium prices and per-period profits are taken to the
dynamic parameter estimation as inputs.

3.3.2. Estimation of Dynamic Parameters. Traditional
estimation of the structural dynamic parameters ρ and
δ requires solving the MPE investment policy function
x(ω) and value function V(ω) for each firm at each
possible industry state. The nested fixed point (NFXP)
approach of Rust (1987) solves the MPE for each guess
of ρ and δ, requiring substantial computational bur-
den to estimate themodel, especially when the number
of possible states and the number of competing firms
are both large. To alleviate this burden, we apply the
MPEC approach proposed by Su and Judd (2012).16
MPEC does not require solving the MPE for every
guess of the dynamic parameters; instead, it treats pol-
icy functions x(ω) and value functions V(ω) as param-
eters to be estimated, subject to equilibrium condition
constraints.
More specifically, the MPEC constrained optimiza-

tion problem is formulated as

max
ρ, δ, x ,V

L(ρ, δ, x ,V)
subject to
(1) V(ω j , ω− j)� π(ω j , ω− j) − x j ,

+ βE[V(ω′j , ω′− j) | ω], ∀ j,

(2) β
∑

v j

W(v j | ω)
∂p(v j)
∂x j

− 1 � 0, ∀ j,

(3) x j ≥ 0, ∀ j,

(10)

where L(ρ, δ, x ,V) is the full likelihood function, which
is presented in Appendix C to conserve space. For
a given value of the parameters ρ and δ, the model
predicts quality changes for each firm in each time
period according to the state transition process defined
in Equation (5). This transition process depends on
the realized firm-specific investment outcomes and
industry-wide shocks. The likelihood function is for-
mulated to match the predicted quality changes to the
observed quality changes.

The policy functions x(ω) and value functions V(ω)
are treated as parameters required to satisfy three
sets of constraints imposed on the likelihood func-
tion. The first set is the Bellman equation defined by
Equation (8). The second set is the first-order condi-
tions derived from the right-hand side of the Bellman
equation (as shown in Equation (B.4) in Appendix B),
where p(v j) represents the probability distribution of
the investment outcome v j . The third set constrains
investments to be nonnegative. Although estimating
the value functions and policy functions increases the
parameter space, the Jacobian matrix of the constraints
is very sparse. This sparseness, along with analytical
tractability, speeds optimization and allows (10) to be
maximized using a Newton–Raphson method rather
than a quasi-Newton algorithm.

The identification strategy is the following: the pro-
pensity of all firms’ qualities to deteriorate or fail to
improve in the same period identifies δ (i.e., the proba-
bility of the quality improvement of the outside good),
because this industry-wide shock affects all firms in
the same market. The effectiveness of investment, ρ, is
identified by individual firms’ tendency to realize qual-
ity improvements in the absence of a common industry
shock.

An ideal data set might contain direct observations
of firms’ strategic R&D investments x. However, firms
typically treat product-specific R&D expenditures as
trade secrets, making it very difficult to obtain such
data for multiple competing firms. As a result, we use
the optimal investment policies x∗ in place of the unob-
served investment data, assuming rational investment
behavior.
3.3.3. Estimation Exercise Based on Simulated Data.
We used the estimation algorithm to recover known
values of dynamic parameters to investigate its prop-
erties and ensure the code was functional. We fol-
lowed the Gauss–Jacobi algorithm described in Pakes
and McGuire (1994) to compute the value functions
and policy functions in equilibrium for a set of known
parameter values. We did this using many different
starting values to numerically verify equilibrium exis-
tence and uniqueness.

Starting from a given initial quality state, we ob-
tained the corresponding optimal investment from the
equilibrium policy functions and then computed the
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Table 1. DQL Model Simulation Exercises to Recover
Known Parameters

No. of firms

Parameters No. of time periods 2 3 4

δ (std. dev.) 50 0.35 0.29 0.29
(0.06) (0.06) (0.08)

100 0.32 0.28 0.29
(0.04) (0.03) (0.03)

ρ (std. dev.) 50 2.73 2.16 2.15
(0.68) (0.27) (0.17)

100 1.91 2.01 1.99
(0.30) (0.27) (0.24)

Notes. True values for ρ and δ are 2 and 0.3, respectively. Marginal
cost is assumed to be 5, discount factor β is assumed to be 0.925, and
the number of quality states is 18.

next period’s product quality by simulating investment
outcomes and the realization of the industry shock.
This simulation process was repeated to generate sim-
ulated data sets with 50 or 100 time periods and dif-
ferent numbers of firms (J � 2, 3, 4). For each synthetic
data set, we used the estimation procedure described
above to recover ρ and δ.

In the simulated data sets, we observe firms’ invest-
ment levels. However, because we do not observe
investment levels in themarket data, we did not use the
investment levels when recovering the known param-
eter values. Table 1 reports the means and standard
deviations of the ρ and δ estimates. It shows that
the MPEC approach recovers known parameter values
fairly accurately with relatively small sample sizes. It
also confirms that having longer time periods and/or
more firms in the data facilitates accuracy in parameter
estimation.
We also used simulations to gauge the sensitivity

of the parameter estimates to the assumptions about
the unobserved upper bound of the quality space, ω̄.
Specifically, for all values of ω̄ up to 18, we generated
synthetic data from known parameters and then esti-
mated those parameters using the synthetic data, in
the manner described above.We found that the param-
eter estimates displayed no apparent sensitivity to the
choice of ω̄, so long as ω̄ was not reached within the
simulated data set.17 Therefore, we set ω̄ to be at least
one level above the maximum observed quality in the
synthetic data.

3.4. Vector Autoregression Model
The dynamic quality ladder model is evaluated rela-
tive to a benchmark. The VAR model provides a famil-
iar framework capable of describing joint evolution
of competing firms’ quality levels. The VAR allows
for firm-specific autocorrelation parameters, cross-firm
correlations in quality, and correlated errors across
firms and time periods.18 The VAR model assumes a

first-order autoregressive process on the evolution of
perceived quality to mimic the state transition process
of the DQL model:

ω̃1t
. . .
ω̃Jt

 � A

ω̃1t−1
. . .
ω̃Jt−1

 +


e1t
. . .
e Jt

 , (11)

where t � 2, . . . ,T indexes time periods and T is the last
period in the estimation sample; A is a J × J matrix of
parameters measuring the correlation between current
and past quality levels across J firms; and the errors
e jt ∼ N(0,Σ) are distributed Normal with a covari-
ance matrix Σ to be estimated along with the parame-
ters in A.

4. Data and Perceived Quality Estimates
The empirical context of the current paper is the auto-
motive industry, which has historically contributed
3%–3.5% to gross domestic product. General Motors,
Inc., introduced the practice of annual model-year
design changes in the early 1920s. This regular cycle
of innovation leads automakers to invest 4% of their
U.S. revenues, about $18 billion annually, on R&D (Hill
et al. 2014).

The analysis focuses on three automotive categories:
compact car, midsize car, and full-size pickup.19 These
three categories were selected because they have rel-
atively long histories in the industry and the pri-
mary competitors within these categories have been
relatively stable. In each of the three categories, we
identified the four largest manufacturers: in compact
car and midsize car, they were Toyota, Honda, Ford,
and Chevrolet; and in full-size pickup, the top four
firms were Ford, Chevrolet, Dodge, and GMC (General
Motors Truck Company).20
We employ two automotive sales data sets to es-

timate model parameters. Category-specific price re-
sponsiveness parameters were estimated using 7.9
individual automotive sales transactions from 1997 to
2012. This exercise yielded highly precise estimates
of α̂, allowing us to separate price response from per-
ceived equality estimates.21 The detailed transaction
data were not used to estimate all perceived qual-
ity levels because they only date back to 1996, pro-
viding insufficient degrees of freedom to estimate the
dynamic parameters δ and ρ.

To estimate perceived quality, we constructed a
larger T data set of unit sales and list prices for each
model-year from Ward’s Automotive Yearbook. Data were
available from 1975 to 2011 for compact car and from
1984 to 2011 for midsize car and full-size pickup cat-
egories. All list prices were converted to 1999 dollars
using the Bureau of Labor Statistics Consumer Price
Index. Data on gasoline price and MPG by vehicle
model were collected from the U.S. Department of
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Figure 1. Market Shares and Prices (in 1999 Dollars) by Category

Energy. VMT data were gathered from the Bureau of
Transportation Statistics.
Figure 1 shows the market shares (left panel) and

prices (right panel) of the four major manufacturers in
each of the three categories. In compact car and mid-
size car, themarket shares of Toyota andHonda display
a slight upward trend, whereas the market shares of
Ford and Chevrolet remained relatively stable. Simi-
larly, the market shares of Ford and Chevrolet in the
full-size pickup category remained stable over time,
whereas the market shares of Dodge and GMC showed
slight upward trends.22

Figure 2 displays the perceived quality estimates ω̃.
The y axes represent the estimated quality in contin-
uous space. The dotted horizontal lines separate the

ranges used to discretize the quality estimates ω. The
discretization procedure is explained in Appendix A.2.
The number of total discrete quality levels chosen in
compact car, midsize car, and full-size pickup is eight,
nine, and seven, respectively. In all three categories, we
observe comovement of firms’ product quality in some
periods and divergence in quality movements in other
periods.

5. Empirical Results
Our central research focus is to examine the perfor-
mance of the DQL model in nonrandom holdout tests,
to understand its ability to predict market changes
after regime shifts. The regime shift analyzed is the
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Figure 2. Estimated Perceived Quality with Discretization Boundaries

2008 rise in gas price, which allows us to conduct a
counterfactual by solving equilibrium investment and
market outcomes under the new regime. We estimate
the DQL model in the three automotive categories
using data up to the year 2007. The expected vehi-
cle fuel cost (EVFC) enters the estimation of dynamic

parameters as an exogenous fixed-state variable. The
dynamic parameters were estimated using the average
EVFC across the in-sample periods. Given the param-
eter estimates, we then solve for the new equilibrium
outcomes when the EVFC is changed to the average
across the holdout periods—that is, the new regime.
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Then, for each draw of the DQL parameter estimates
from its asymptotic distribution, perceived qualities
are predicted based on the new equilibrium outcomes,
and then market shares are generated by solving the
demand system based on the predicted quality levels
and the corresponding equilibrium prices. Predictions
of perceived quality and market shares are then com-
pared to observations of market outcomes.23
For the holdout years 2008–2011, we produce two

types of predictions: one-year horizon predictions, in
which year t data are used to predict perceived qual-
ity and market share in year t + 1, and multiple-year
horizon predictions, in which we use observed mar-
ket outcomes in 2007 to predict the perceived quality
and market shares from 2008 until 2011. Multiple-year
horizon predictions are useful because many policy
changes have effects that are realized over multiple-
year horizons, requiring policy makers to account for
long-term impacts on agents’ investments and subse-
quent investment payoffs.
The mean absolute error (MAE) is used to evalu-

ate the accuracy of the predictions, and the DQL pre-
dictions are evaluated relative to VAR.24 As the DQL
model generates quality predictions in discrete lev-
els, the prediction error is calculated as the difference
between the midpoint of the range in which the pre-
dicted quality level resides and the actual quality in the
holdout periods.25
Table 2 presents ratios of DQL MAE to VAR MAE,

based on quality-level predictions, for one-year hori-
zon predictions andmultiple-year horizon predictions.
A ratio of less (more) than 1means that the DQLmodel
predictions exhibit a smaller (larger) MAE than the

Table 2. Quality Prediction MAE Ratio (DQL/VAR) in
2008–2011 Holdout Sample

One-year horizon Multiple-year horizon

2008 2009 2010 2011 2008 2009 2010 2011

Compact car 1.8 1.8 2.2 2.0 — 1.9 1.9 2.0
Midsize car 1.0 0.7 0.6 0.8 — 0.7 0.7 0.9
Full-size pickup 1.7 2.0 1.5 1.4 — 0.9 0.7 0.6

Note. When the ratio is less than 1 (as indicated in bold), VARmodel
predictions exhibit a larger MAE than DQL model predictions.

Table 3. Market Share Prediction MAE Ratio (DQL/VAR) in
2008–2011 Holdout Sample

One-year horizon Multiple-year horizon

2008 2009 2010 2011 2008 2009 2010 2011

Compact car 1.5 1.1 1.6 1.7 — 1.6 1.7 1.7
Midsize car 0.8 0.8 0.7 0.7 — 0.8 0.8 0.8
Full-size pickup 0.8 1.1 1.3 0.9 — 0.6 0.6 0.5

Note. When the ratio is less than 1 (as indicated in bold), VARmodel
predictions exhibit a larger MAE than DQL model predictions.

Table 4. Dynamic Quality Ladder Model Parameter
Estimates

Full-size
Compact car Midsize car pickup

Price
Est. −0.52∗∗ −0.18∗∗ −0.13∗∗
(Std. err.) (0.02) (0.01) (0.01)

Mean price elasticity
Est. −6.93 −3.13 −2.63
(Std. dev.) (0.27) (0.26) (0.24)

Marginal cost
Est. 8.91∗∗ 10.36∗∗ 6.20∗
(Std. err.) (0.45) (0.32) (0.86)

Delta
Est. 0.21∗∗ 0.29 0.50∗∗
(Std. err.) (0.08) (0.19) (0.17)

Mean probability of
successful investment (%)

Est. 54 66 71
(Std. dev.) (18) (16) (16)

∗Significant at the 95% level; ∗∗significant at the 99% level.

VAR model predictions. Table 3 presents similar infor-
mation for market share predictions. Figure 3 depicts
the information in Tables 2 and 3.

Section 5.1 discusses parameter estimates. Section 5.2
interprets the DQL model’s prediction performance
across categories and between the two time horizons.
Section 5.3 presents a supplemental analysis to validate
the results. Section 5.4 reports model fit statistics and
welfare analyses.

5.1. Parameter Estimates
Table 4 presents the static demand parameter esti-
mates as well as the parameter estimates governing
firms’ investment decisions in the dynamic quality lad-
der model. The mean price responsiveness parameters
translate to price elasticities of about −7 in the compact
car category, −3.1 in the midsize car category, and −2.6
in the full-size pickup category, showing that demand
for larger automobiles is relatively less responsive to
vehicle price.

Among the dynamic quality ladder model parame-
ters, the estimated probability of an improvement in
the outside option (δ) ranges from 21% to 50%. The
investment effectiveness parameter ρ maps investment
expenditure into the probability of successful invest-
ment outcomes; across the range of estimated invest-
ment levels, the mean probability of successful innova-
tion is between 54% and 71%,which suggests that firms
consistently invest in R&D and realize product-quality
improvements.

Table 5 presents the parameter estimates from the
VAR model. Most scenarios show significant corre-
lations between the lagged qualities and the current
qualities within each firm. Only a few cases showed
significant correlations between a firm’s current qual-
ity and its competitors’ lagged qualities.
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Figure 3. MAE Ratios (DQL/VAR) for 2008–2011 Holdout Sample

5.2. Nonrandom Holdout Results
Figure 3 illustrates the ratios of the quality level MAEs
(Figure 3(a)) and market share MAEs (Figure 3(b))
across three categories in each of the holdout periods
(2008–2011) for both one-year and multiple-year time
horizons.26
In the compact car category, MAE ratios are always

above 1.0, for both one-year and multiple-year pre-
diction horizons, and for predictions about both qual-
ity level and market shares. On the other hand, for
the midsize car category, we see the reverse: in nearly
all cases, the DQL model predicted market share and
quality levels better than the VAR. The lone exception
is the quality level prediction for 2008, in which the
two models predicted about equally well.

In the full-size pickup category, the two prediction
horizons diverged somewhat. In terms of quality lev-
els, the VAR always predicted better than the DQL in
one-year prediction horizons. However, for multiple-
year horizons, the DQL model predicted better than
the VAR. In terms of market shares, the DQL model’s
performance was slightly better, but the main result

persists that the relative prediction performance of the
DQL was far better under multiple-year horizons than
the one-year horizon.

Looking at the results between the two time hori-
zons, the DQL model predicts better for two out
of three categories, midsize car and full-size pickup,
under multiple-year horizon, whereas the VAR model
performs better for the compact car and full-size
pickup categories under one-year horizon predictions.
This pattern may imply that the DQL model is more
suitable for predicting market outcomes over a longer
time horizon. This is consistent with the assumptions
of each model: the DQL considers the long-run sta-
tionary equilibrium, and the VAR model in the cur-
rent study only included the first lag of the dependent
variables.

The overall result, across categories and prediction
horizons, suggests that the relative performance of the
DQL model is somewhat situational. The next section
investigates a possible explanation for the performance
results: the importance of the gasoline price shock
within each category.
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Table 5. VAR Model Parameter Estimates

Compact car

Hondat−1 Toyotat−1 Fordt−1 Chevrolett−1

Honda 0.75∗∗ 0.34 −0.04 −0.03
(0.19) (0.19) (0.17) (0.14)

Toyota 0.14 0.78∗∗ 0.09 0.00
(0.17) (0.17) (0.16) (0.13)

Ford 0.26 0.08 0.65∗∗ 0.00
(0.20) (0.20) (0.19) (0.15)

Chevrolet 0.48 −0.31 0.16 0.66∗∗
(0.20) (0.19) (0.18) (0.15)

Midsize car

Hondat−1 Toyotat−1 Fordt−1 Chevrolett−1

Honda 0.46 0.33 −0.39 0.26
(0.30) (0.21) (0.23) (0.19)

Toyota 0.51 0.02 0.06 0.14
(0.39) (0.27) (0.30) (0.24)

Ford −0.10 0.22 0.24 0.13
(0.55) (0.38) (0.42) (0.34)

Chevrolet −0.05 0.21 −0.15 0.06
(0.40) (0.28) (0.31) (0.25)

Full-size pickup

Fordt−1 Chevrolett−1 Dodget−1 GMCt−1

Ford 0.91∗∗ 0.22 0.04 −0.50∗
(0.20) (0.25) (0.06) (0.23)

Chevrolet 0.11 0.90∗∗ 0.01 −0.06
(0.20) (0.25) (0.06) (0.23)

Dodge −0.64 0.84 0.97∗∗ −0.26
(0.33) (0.40) (0.10) (0.38)

GMC −0.10 0.18 0.08 0.73∗∗
(0.20) (0.24) (0.06) (0.23)

∗Significant at the 95% level; ∗∗significant at the 99% level.

5.3. Supplemental Analysis of
Increase in Gas Price

What explains the differential nonrandom holdout
performance between the two models across three
categories? It is possible that the difference corre-
sponds to the extent to which each category is exposed
to the rise of gasoline price in 2008.
To investigate the explanation further, we gathered

additional data to estimate category-specific impacts
of the increase in gas price on automotive demand.
In 2008, the sales of full-size pickup and midsize car
in the U.S. market fell by 20% and 11%, respectively;
sales of compact cars only fell by 1%. These results,
along with contemporaneous press accounts, suggest
that the latter category is less sensitive to gas price
overall (Associated Press 2008). It stands to reason
that demand for large automobiles is more sensitive
to gasoline price shocks than demand for more fuel-
efficient cars. To examine whether this is true, we
matched the detailed automotive transaction sales data
described in Appendix A.1 to weekly gas prices for 10

Table 6. The Effects of Gas Price on Sales by Category

Estimate
Variable (std. err.)

Compact car×Lagged gas price −0.07∗
(0.03)

Midsize car×Lagged gas price −0.10∗∗
(0.03)

Full-size pickup×Lagged gas price −0.65∗∗
(0.03)

Notes. The estimates of brand and city fixed effects were
excluded for brevity. The R-square is 0.52.
∗Significant at the 95% level; ∗∗significant at the 99% level.

major cities from 2003 to 2012. The 10 cities were cho-
sen according to the availability of geographic gas price
data.27 We regress weekly model sales on brand dum-
mies, city dummies, and an interaction between auto-
motive category and log of gas price.28 This regression
uses geospatial variation as well as time-series varia-
tion to estimate the impact of gas price on sales of new
automobiles.

Table 6 shows the category-specific effects of gas
price on new auto sales. As expected, gas prices tend
to reduce automotive demand in all three categories.
However, the point estimates of lagged gas price on
new vehicle sales are larger for midsize car and full-
size pickup than in the compact car category.

Overall, this separate longitudinal analysis supports
the idea that the DQL model’s relative prediction per-
formance in nonrandom holdout exercises was better
in categories that were more affected by the regime
shift. It does not explain the prediction results per-
fectly; the VAR model was relatively better in the
full-size pickup category in one-year horizon predic-
tion exercises. However, it does offer limited evidence
for the idea that the DQL model performs better
in multiple-year predictions when regime shifts are
larger, as it did in midsize car and full-size pickup
categories.29

5.4. Goodness of Fit and Welfare Analysis
A common practice to evaluate a particular model is
to look at how well the model fits the estimation sam-
ple. On the basis of the parameter estimates, perceived
quality and market shares were predicted for the esti-
mation sample periods, and the average MAE across
the holdout periods was computed to measure the in-
sample fit in each scenario. Table 7 presents the find-
ings, showing that the VAR model fits the estimation
data better than the dynamic quality ladder model
across three categories.30 These results suggest that a
model that fits the data better does not always predict
better out of sample, consistent with general concerns
about overfitting and calls for cross-validation (e.g.,
Picard and Cook 1984, Shao 1993, Chintagunta et al.
2006, Greene 2012).
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Table 7. Model In-Sample Fit Statistics (MAE)

VAR DQL

Market share predictions
Compact car 0.04 0.06
Midsize car 0.02 0.03
Full-size pickup 0.02 0.04

Quality level predictions
Compact car 0.28 0.74
Midsize car 0.13 0.37
Full-size pickup 0.12 0.44

We can also use the dynamic quality ladder model
to predict consumer welfare and per-period profits for
the nonrandom holdout sample periods and compare
them to the VAR predictions. For both models, we
relied on the demand model and the per-period profit
function specified in Section 3 to calculate consumer
surplus and firm profits in each of the out-of-sample
periods. We solved for the firms’ optimal prices by
inserting the predicted quality into the demandmodel,
computed the per-period profits at the implied prices,
and converted consumers’ utilities to monetary values
using the price responsiveness parameter α. Finally,
we computed the average consumer surplus for the
holdout sample 2008–2011 and the average per-period
profits across firms and the holdout sample periods.
Table 8 shows the average consumer surplus and

the average firm per-period profits under each model
along with the actual values calculated based on the
observed qualities and prices.31 Two findings are worth
discussion: first, the full-size pickup category gener-
ates the highest per-period profits and consumer sur-
plus, followed by midsize car and compact car in
descending order. Second, profits based on both mod-
els are reasonably close to the per-period profits based
on the actual quality levels. However, we want to avoid

Table 8. Average Consumer Surplus and Average Firm
Per-Period Profits

VAR DQL
Actual (std. dev.) (std. dev.)

Average consumer surplus ($ billion)
Compact car 3.8 6.0 10.2

(3.1) (4.1)
Midsize car 88.4 105.1 113.0

(19.0) (14.1)
Full-size pickup 114.2 112.0 120.7

(9.4) (17.3)
Average firm static profits ($ billion)

Compact car 2.1 1.5 1.9
(0.2) (0.2)

Midsize car 10.8 8.7 8.3
(0.6) (0.3)

Full-size pickup 11.3 9.8 9.3
(0.5) (0.3)

excessive interpretation of these comparisons as the
demandmodel and the per-period profit function used
to calculate equilibrium prices, per-period profits, and
consumer welfare are not mechanisms built into the
VAR model.

6. Discussion
In light of recent calls for further validation of struc-
tural models, the present article evaluates the dynamic
quality ladder model using the nonrandom holdout
approach proposed by Keane and Wolpin (2007). The
DQLmodel’s ability to predict data after a regime shift
is evaluated relative to a benchmark VARmodel. Look-
ing across three automotive categories and two time
horizons, we found that the predictive performance of
the DQL model performs better in multiple-year pre-
dictions when the size of regime shifts experienced in
the category is larger.

This paper has a number of limitations which sug-
gest avenues for further investigation. The most impor-
tant caveat is that only a single, stylized dynamic qual-
ity ladder model has been evaluated. We chose to do
this because of the overwhelming prevalence of direct
application of the EP framework in the literature. How-
ever, one could reasonably question whether the DQL
model tested in the current paper could be adapted
to fit the automotive industry more closely. For exam-
ple, both advertising and R&D investment could influ-
ence the evolution of perceived product quality. If data
on advertising were available, a model could accom-
modate two dynamic decisions affecting quality tran-
sitions. Or if major automotive model revisions take
more than a year to complete, a model could allow
for time lags between periods when investment deci-
sions are made and when quality improvements are
realized. However, although these modifications may
bring the model closer to reality, they are not theoreti-
cally straightforward as they may influence the condi-
tions that guarantee the existence of equilibrium. They
remain as interesting directions for future research to
extend the EP framework.

Another possible direction for future research is to
test the DQL model in nonautomotive settings or to
test extensions of the DQL model that have been pro-
posed by other authors. For example, Borkovsky et al.
(2017) allow for multistep product-quality movements,
Goettler and Gordon (2011) model firm-specific inno-
vation parameters, Gowrisankaran and Town (1997)
model investment cost and account for endogenous
entry/exit decisions, and Markovich (2008) considers
consumers’ forward-looking behavior and its conse-
quences for durable goods.

Overall, we believe we have provided some initial
results about the reliability of policy experiments using
the popular dynamic quality ladder model frame-
work. Broadly speaking, our results show that the
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DQL model performs well in multiple-year nonran-
dom holdout exercises when regime shifts are larger
but that a benchmark VAR model performs better in
one-year predictions. We suspect that further investi-
gations of model validity will increase confidence in
the modeling paradigm and continue to prove that dy-
namic oligopoly models are valid tools to estimate the-
oretical parameters and answer policy questions.

Acknowledgments
The authors thank Hai Che, Andrew Ching, Anthony Dukes,
Brett Gordon, Karsten Hansen, Masakazu Ishihara, Ahmed
Khwaja, Hongju Liu, Lan Luo, S. Siddarth, Che-Lin Su, Botao
Yang, Song Yao, Yi Zhu, and numerous seminar audiences
for helpful discussions and suggestions.

Appendix A. Price Responsiveness Parameter
Estimation and Quality Discretization

It is important to have a precise estimate of the price respon-
siveness parameter in the demandmodel in order to separate
perceived quality from prices. This led us to use a sepa-
rate and more granular data set to estimate consumers’ price
responsiveness, as described in Section A.1. The perceived-
quality estimates are discretized in accordance with the spec-
ification of the DQL model. The discretization procedure is
discussed in Section A.2.

A.1. Price Responsiveness Parameter Estimation
The price responsiveness parameter could not be precisely
estimated using the annual data described in Section 4.
Instead, we use detailed transaction-level sales data of the
three categories (compact car, midsize car, and full-size
pickup) in the U.S. market from 1996 to 2012, which was col-
lected by the Power Information Network (PIN), a division
of J.D. Power and Associates. For each transaction, the data
report the transaction date, type (lease, finance, or cash), pric-
ing terms (e.g., down payment, rebate, annual percentage
rate), and vehicle characteristics (make, model, and model-
year). Within each category, we analyzed transactions of the
most dominant model for each of the four major manufactur-
ers, as discussed in Section 4. This resulted in sample sizes of
2.5 million observations for compact car, 2.7 million observa-
tions formidsize car, and 2.7million observations for full-size
pickup.

Following Xu et al. (2014), we first constructed the transac-
tion price as the net present value of each transaction across
three types: lease, dealer finance, and “cash,” in which cus-
tomers finance through an outside lender or pay in full. We
then aggregated the transaction-level data on sales for each
model in each category to the weekly level and constructed
a panel of average prices at the firm-category-week level to
estimate the price responsiveness parameter.

Specifically, consumer i purchasing from product j in
week w gets utility

ui jw � β j + αTVC jw + ζ jw + ei jw , (A.1)

where TVC jw � p jw + EVFC jt is the total vehicle cost, which
includes the vehicle price, p jw , and the expected vehicle fuel
cost, EVFC jt . The cost EVFC jt is constructed in the same way

as described in Equation (2) of Section 3. The only difference
is that the annual fuel cost, FC jt � gpw × (VMTt/MPG j), is
computed based on gas price in week w of year t.

Product intercept β j captures consumers’ mean prefer-
ences for product j; ζ jw represents any unobserved weekly
departures from the mean product preferences, which is
assumed to be normally distributed with a variance to be
estimated. Similar to the waywe conceptualize the term ω̃ jt �

θj + ξ jt in Equation (1) as the perceived quality of product j
in year t, the term β j + ζ jw can be considered as the perceived
quality of product j in week w. Given the assumption that the
consumer idiosyncratic preference ei jw is independently and
identically distributed of Type I extreme value,32 the market
share for model j in week w is given by33

s jw �
exp(β j + αTVC jw + ζ jw)

1+∑
k βk + αTVCkw + ζkw

. (A.2)

We log-transform the market shares relative to the outside
option and estimate the parameters for each of the three
categories following Berry (1994). The price responsiveness
parameter estimates α̂ are all significant and precise, with t-
statistics ranging from 13 to about 26, as reported in Section 5.

A.2. Quality Discretization
The estimated perceived quality ω̃t is discretized into parti-
tioned levels (denoted by ωt), in amanner consistent with the
state transition process described by Equation (5). This tran-
sition process implies two requirements needed for logical
consistency with the model: (i) a firm’s quality cannot move
more than one level from one period to the next, and (ii) if
one firm’s quality increases (decreases), none of the other
firms’ quality levels can decrease (increase) simultaneously.

To understand these two requirements, recall that the val-
ues of v j can be either 0 (the investment fails) or 1 (the invest-
ment succeeds). The same is true for η: if η � 0, the industry
shock is not realized and firms’ quality only depends on their
own investment; if η � 1, the outside option improves and
all firms’ qualities are reduced by one level. Therefore, all
possible values of v j − η are in the set {−1, 0, 1}. Require-
ment (i) says that no firm may move more than one qual-
ity level in one period; this is implied by the maximum
change in v j . Requirement (ii) says that if any firm’s quality
is observed to rise in one period, no other firm’s quality may
be observed to fall in the same period. If one firm’s qual-
ity rises, then v j − η � 1, so it must be that η � 0. Conversely,
if any firm’s quality is observed to fall in some period, it
must be that η � 1, so v j − η must equal either −1 or 0 for
every other firm, depending on the outcome of that firm’s
investment. Therefore, for logical consistency, the quality lev-
els must be partitioned such that firms’ quality levels never
move in opposite directions in the same period, consistent
with requirement (ii).

To discretize the estimated qualities, we found that for two
categories (compact car and midsize car), partitions chosen
at intervals of 0.5 in continuous quality space produced qual-
ity discretizations that satisfy these two requirements. Minor
adjustments in either direction (smaller or larger) led to viola-
tions of either requirement (i) or requirement (ii). For full-size
pickup, we found that slightly larger intervals were needed
to avoid violating requirement (i), so an interval of 0.7 was
chosen. These partitions are shown graphically in Figure 2.
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It is possible that the discretization may affect the models’
ability to predict product quality and market shares. For this
reason, the benchmark VAR is estimated in continuous units
of quality, to prevent the quality discretization from harming
the performance of the benchmark model.

Appendix B. Derivation of the Optimal Investment
To compute the expectation term in Equation (8), each firm
must form an expectation of future market states, conditional
on its competitors’ optimal strategies and possible outcomes
of the shock η. We can rewrite the expectation as

E[V(ω′j , ω′− j) | ω]�
∑

v j

W(v j | ω)p(v j), (B.1)

where

W(v j |ω)≡
∑
ω′− j

∑
η

V(ω j + v j − η,ω′− j)q(ω′− j |ω, η)p(η) (B.2)

is firm j’s expected payoff conditional on the outcome of
its investment and p(v j) is the distribution of v j as given
in Equation (4); q(ω′j | ω, η) represents firm j’s expectation
of its competitors’ next-period states ω′− j conditional on the
common shock η. These beliefs are rational in the sense that
they are consistent with competitors’ equilibrium investment
strategies.

Plugging Equations (B.1) and (B.2) into (8) gives

V(ω j , ω− j)� max
x j

{
π(ω j , ω− j) − x j + β

∑
v j

W(v j | ω)p(v j)
}

� max
x j



π(ω j , ω− j) − x j

+ β
∑

v j

[∑
ω′− j

∑
η

V(ω j + v j − η, ω′− j)

· q(ω′− j | ω, η)p(η)
]
p(v j)


.

(B.3)

Note that W(v j | ω) is not a function of x j , so differentiating
Equation (B.3) with respect to investment x j leads to the first-
order condition for the investment policy function:

−1+ β
∑

v j

W(v j | ω)
∂p(v j)
∂x j

� 0. (B.4)

Equation (4) implies equalities ∂p(v j � 1)/∂x j � ρ/(1+ ρx j)2
and ∂p(v j � 0)/∂x j �−ρ/(1+ρx j)2. Plugging these into Equa-
tion (B.4),

−1+ β
ρ

(1+ ρx j)2
{W(v j � 1 | ω) −W(v j � 0 | ω)} � 0. (B.5)

Rearranging (B.5) and imposing the nonnegativity constraint
x j ≥ 0, the analytical solution of the optimal investment pol-
icy is

x∗j(ω j , ω− j)� max
{
0,
−1+

√
βρ(W(1 | ω) −W(0 | ω))

ρ

}
(B.6)

if W(1 | ω) ≥W(0 | ω) and x∗j(ω j , ω− j)� 0 otherwise.

Appendix C. Likelihood Function Formulation and
Alternative Estimation Methods

Two-step estimation approaches have been developed to
reduce the computational burden of solving for optimal poli-
cies at every point in the state space (e.g., Aguirregabiria and
Mira 2007, Bajari et al. 2007, Pakes et al. 2007).34 Doraszelski
and Pakes (2007) and Borkovsky et al. (2012) reviewed this
literature. The essence of the two-step approach is to avoid
the computation of the fixed point by flexibly estimating
state transition probabilities and policy functions in the first
step, assuming the observed data are generated by equilib-
rium play. However, a general concern about this approach
is that the first-step estimates might not be compatible with
the equilibrium implied by the underlying model, result-
ing in serious finite sample biases of the second-stage esti-
mates of the structural parameters (Aguirregabiria and Mira
2007). Given the small number of quality observations typ-
ically available in technology-related product categories,
these potential finite sample problems are considered to be a
first-order concern.

The current paper adopts the MPEC approach to estimate
the parameters of interest. The objective function of the con-
strained optimization problem is a likelihood function that
matches the predicted quality changes to the observed qual-
ity changes. Let d̂ jt ∈ {−1, 0, 1} represent the possible quality
change for firm j at the end of time period t, as a result
of the realization of its investment x jt and the realization of
the industry-wide shock ηt . As explained in Appendix A.2,
three mutually exclusive events might happen in each time
period: (a) at least one firm’s quality improves, denoted by
I1t � 1; (b) at least one firm’s quality deteriorates, denoted
by I0t � 1; or (c) no firm’s quality changes (i.e., I1t � 0 and
I0t � 0). The probability that each of these three events occurs
is given by

(a) Pr(I1t�1)
�(1−δ)∏ j Pr(v jt�1)I(d̂ jt�1)Pr(v jt�0)1−I(d̂ jt�1) ,

(b) Pr(I0t�1)
�δ

∏
j Pr(v jt�0)I(d̂ jt�−1)Pr(v jt�1)1−I(d̂ jt�−1), and

(c) Pr(I1t�0 and I0t�0)
�δ

∏
j Pr(v jt�1)I(d̂ jt�0)

+(1−δ)∏ j Pr(v jt�0)I(d̂ jt�0) ,

where Pr(I1t � 1) is the joint probability that event (a) hap-
pens, Pr(I0t � 1) is the joint probability that event (b) occurs,
and Pr(I1t �0 and I0t �0) is the joint probability that event (c)
occurs. Here, Pr(v jt � 1) � ρx jt/(1 + ρx jt) and Pr(v jt � 0) �
1/(1 + ρx jt) are the probability that firm j’s investment
succeeds and fails, respectively, provided in Equation (4) of
Section 3. Given an industry state ωt , we could compute these
three probabilities based on the optimal investment policies
x∗t � (x∗1t , . . . , x

∗
Jt).

Now let Ît ≡ ωt+1 − ωt represent the observed vector of
firms’ quality changes. We can write out the likelihood func-
tion of observing the quality changes given the probability of
each event defined above:35

L(·;ρ, δ)�
∏

t
{(Î1t � 1)Pr(I1t�1)(Î0t � 1)Pr(I0t�1)

· (Î1t � 0 and Î0t � 0)Pr(I1t�0 and I0t�0)}. (C.1)

The MPEC approach is then to maximize this likelihood
function subject to the three sets of equilibrium constraints
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defined in Equation (10) by searching for optimal values of
the structural parameters ρ and δ as well as solving for the
value functions V(ω) and policy functions x(ω).

Appendix D. Quality Predictions
This section describes howwe use the parameter estimates of
the dynamic quality ladder model as well as the benchmark
VARmodel to predict product qualities andmarket shares for
the out-of-sample periods 2008–2011. Both sets of predictions
account for estimation error in the parameters.

D.1. Dynamic Quality Ladder Model Predictions
The DQL model predictions are done via a counterfactual
by computing equilibrium under the new regime (i.e., the
average fuel cost in 2008–2011) based on themodel parameter
estimates. That is, we solve the Bellman equation (8) to obtain
the equilibrium investments at each possible industry state
under the new regime.

To predict product-quality levels after 2007, we need to
simulate the outcomes of firms’ investments based on the
state transition process, Equation (5) in Section 3.2. We make
predictions in the following steps for the one-year prediction
horizon:

Step 1. Solve for the optimal investment policies x∗ in
year t using the observed quality levels in year t − 1 as the
initial state vector.

Step 2. Draw from the asymptotic distributions of ρ and δ,
obtained by the estimation of the DQL model. We then cal-
culate the probability that each firm’s investment succeeds as
ρx∗j/(1+ ρx∗j).

Step 3. Simulate the values of v j and η by drawing from
the standard uniform distribution. If the draw is greater than
ρx∗j/(1 + ρx∗j), then v j � 0; otherwise, v j � 1. Similarly, if a
separate uniform random draw is greater than δ (recall that
δ represents the probability that the negative demand shock
is realized), η � 0; otherwise, η � 1.

Step 4. Based on the simulated values of v j and η, year t
quality levels are predicted using Equation (5). The predicted
qualities are in discrete levels and are then converted to con-
tinuousmeasures by taking themidpoint of the quality range
that the discrete quality belongs to.

Step 5. Given the predicted quality in year t, we solve
the per-period profit maximization problem (Equation (6))
simultaneously for all firms to obtain the optimal prices. The
predicted quality and the corresponding optimal prices are
then taken back into the demand system (Equation (3)) to
calculate the predicted market shares.

Step 6. Repeat Steps 2–5 1,000 times. The MAE is calcu-
lated as the mean of the 1,000 absolute prediction errors.

This completes the description of the one-year prediction
horizon, in which year t prediction errors are always calcu-
lated as a function of the observed state in year t − 1.

The multiple-year prediction horizon uses a very similar
algorithm. The 2008 predictions are based on the observed
state in 2007. Then, for a draw of ρ and δ, Steps 2–5 are
repeated in all subsequent years, with each year taking the
previous year’s predicted state vector as the initial state.
Finally, we take the average MAE across firms and holdout
periods to compute the MAE ratio presented in Section 5.

Table D.1. Prediction Performance Measure Comparison

One-year horizon Multiple-year horizon

2008 2009 2010 2011 2008 2009 2010 2011

a: Perceived quality predictions
MAE

Compact car 1.8 1.8 2.2 2.0 — 1.9 1.9 2.0
Midsize car 1.0 0.7 0.6 0.8 — 0.7 0.7 0.9
Full-size pickup 1.7 2.0 1.5 1.4 — 0.9 0.7 0.6

RMSE
Compact car 1.6 1.6 2.0 2.1 — 1.7 1.8 1.9
Midsize car 0.9 0.6 0.6 0.7 — 0.7 0.7 0.8
Full-size pickup 1.7 1.9 1.5 1.4 — 0.9 0.8 0.7

b: Market share predictions
MAE

Compact car 1.5 1.1 1.6 1.7 — 1.6 1.7 1.7
Midsize car 0.8 0.8 0.7 0.7 — 0.8 0.8 0.8
Full-size pickup 0.8 1.1 1.3 0.9 — 0.6 0.6 0.5

RMSE
Compact car 1.4 1.1 1.5 1.7 — 1.6 1.7 1.7
Midsize car 0.8 0.8 0.7 0.7 — 0.8 0.7 0.7
Full-size pickup 0.8 1.1 1.3 1.0 — 0.7 0.6 0.5

Note. When the ratio is less than 1 (as indicated in bold), VARmodel
predictions exhibit a larger error than DQL model predictions.

We also compute other prediction accuracymetrics such as
root mean squared error (RMSE). Table D.1 shows that differ-
ent prediction performancemetrics lead to similar qualitative
conclusions about the nonrandom holdout performance of
the DQL model.

D.2. The VAR Model
The benchmark VAR model predictions are done by taking
draws from the asymptotic distribution of parameter esti-
mates in Equation (11), provided by the model estimation.
We make the predictions in the following steps for the one-
year prediction horizon:

Step 1. Draw from the asymptotic distribution of the
parameter matrix A and Σ.

Step 2. Taking the observed quality in year t − 1 as the
initial state vector, compute the prediction quality of year t
by plugging the numbers from Step 1 into the right-hand side
of Equation (11).

Step 3. Given the predicted quality in year t, we solve
the per-period profit maximization problem (Equation (6))
simultaneously for all firms to obtain the optimal prices. The
predicted quality and the corresponding optimal prices are
then taken back into the demand system (Equation (3)) to
calculate the predicted market shares.

Step 4. Repeat Steps 1–3 1,000 times and compute theMAE
as the mean of the 1,000 absolute prediction errors.

For the multiple-year prediction horizon, Steps 1–4 are
repeated for 2009–2011, each conditional on the predicted val-
ues of the previous year as the initial state. Similarly, we take
the average MAE across firms and holdout periods and com-
pute the MAE ratio reported in Section 5.
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Figure D.1. Predicted and Observed Market Shares for Holdout Periods
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Figure D.1. (Continued)

Note. The dark grey area presents the 90% confidence bound of a brand’s market share predictions made by the DQL model, the light grey
area shows the 90% confidence bound of the VAR model market share predictions, and the solid line in black represents the observed market
shares.

Figure D.2. Predicted and Observed Market Shares for In-Sample Periods
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Figure D.2. (Continued)

(b) Midsize car
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Note. The dark grey area presents the 90% confidence bound of a brand’s market share predictions made by the DQL model, the light grey
area shows the 90% confidence bound of the VAR model market share predictions, and the solid line in black represents the observed market
shares.
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Endnotes
1From a purely practical perspective, further validation of structural
dynamic oligopolymodels may help to show that their benefitsmerit
the nontrivial coding and computational costs of estimating them.
2For example, we systematically reviewed 125 published papers that
cite Pakes and McGuire (1994). To the best of our understanding,
none of them performed model validation using holdout samples.
3Keane and Wolpin (2007) estimated a structural dynamic model of
individuals’ welfare program participation and showed that it per-
formed better in nonrandom holdout samples than several bench-
marks.
4We estimate products’ “perceived quality” as the brand intercepts
in a discrete choice model that rationalize observed market shares at
observed prices. More details are provided in Section 3.
5A few published studies that have gone beyond the EP framework
to study other dynamic decisions, such as dynamic pricing decisions
under a learning environment (Ching 2010) and dynamic production
decisions (Benkard 2004, Esteban and Shum 2007, Chen et al. 2013).
6Hashmi and Van Biesebroeck (2016) and the current paper are
similar in the sense that they both apply the EP framework to the
automotive industry. However, Hashmi and Van Biesebroeck (2016)
focused on discovering the relationship between innovation and
market structure, whereas the purpose of this study is to evaluate the
dynamic quality ladder model using nonrandom holdout samples.
7Other studies have also modeled how advertising builds goodwill
stock in a dynamic oligopoly framework, includingDubé et al. (2004),
Tan (2006), Qi (2013), and Liu et al. (2016).
8Given the limited number of years in the sample, it was determined
that there were insufficient degrees of freedom to estimate unob-
served heterogeneity in demand for automobiles.
9 Ideally, one would want to include MPG as a state variable that is
determined by firms’ product strategies. However, MPG is treated
as exogenously given in the current paper because of the lack of
variation over time within a category. Time trend only explains 8%,
6%, and 0.2% of the total variation in MPG in compact car, midsize
car, and full-size pickup categories, respectively.
10We specify the interest rate as the national average interest rate on
certificates of deposit.
11Automakers typically spend about $18 billion annually on R&D
and another $5.5 billion on advertising (Kantar Media AdSpender
report 2014). A substantial fraction of advertising is used to com-
municate pricing terms and other product information to consumers
(Xu et al. 2014).
12By holding the number of firms constant throughout the course
of the game, we have excluded endogenous entry and exit decisions
from the model. This assumption may affect the model’s nonrandom
holdout performance and the generalizability of the model, but esti-
mating a model with entry and exit requires sufficient observations
of entry and exit, which are very rare in our empirical context.
13Market size is defined as the maximum total annual sales for each
category (compact car, midsize car, and full-size pickup) in the U.S.
market.
14The discount factor is chosen to be 0.925, which corresponds to an
annual interest rate of 8%. Perturbing this assumption to 0.9, 0.95, or
0.975 does not change the qualitative results reported in Section 5.
15To enforce this constraint, we assign η � 1 with probability 1 if any
firm with ω j � ω̄ succeeds in its innovation.
16The estimation typically converged in minutes for two-firm sce-
narios, a few days for three-firm scenarios, and one to three weeks
for four-firm scenarios. Appendix C discusses alternative estimation
methods.
17We also investigated the sensitivity of the parameter estimates
reported in Section 5 to the choice of ω̄ and found that the same

caveat applies: the point estimates are not sensitive to ω̄, so long as
ω̄ is never observed within the estimation data.
18We have also considered firm-specific AR(k)models as alternative
benchmarks, but they do not present better prediction performance
than the VAR model.
19We estimate the model separately for three automotive categories
as in other studies in the literature. This implicitly rules out con-
sumer substitutions across categories.
20Typically, each manufacturer has a single dominant model within
each category at a given time, and that is what we focus on when
gathering data to estimate product qualities. However, a manufac-
turer occasionally “refreshed” an existing model by relaunching
under a new name; at those points, we shift the focus from the
prior model name to the new model name. We also note that GMC
Sierra and Chevrolet Silverado were sold by separate divisions of
General Motors. They are treated as two different firms in our empir-
ical context because they often introduce new models at different
times, charge different prices, have completely separate dealership
networks, and target different segments of consumers.
21Appendix A.1 describes the detailed transaction data, the demand
system used to estimate the price responsiveness parameters and
how they were estimated. In this framework, the demand intercept is
indistinguishable from persuasive advertising or distribution strate-
gies that might contribute to the demand intercept. In additional
analyses, we found that the estimation error of the price coefficient
does not affect the qualitative results presented in Section 5.
22The combined sales of the top four firms, on average, account
for 38% of the compact car market, 37% of the midsize car market,
and 65% of the full-size pickup market. The combined sales of the
5th, 6th, and 7th firm, on average, account for 16% of the compact
car market, 13% of the midsize car market, and 10% of the full-size
pickup market. The compact car and midsize car markets seem to
be less concentrated than the full-size pickup market, as the four
largest manufacturers account for less than 50% of the total market.
Our simulation exercises indicate that having more firms in the data
could facilitate accuracy of the parameter estimates, but four firms is
the largest number that our computational resource allows.
23The predictions are made using 1,000 draws from the joint dis-
tribution of the parameter estimates of each model in each sce-
nario. Therefore, the holdout comparisons fully account for estima-
tion error. A detailed description of the prediction procedure can be
found in Appendix D.
24The comparison results are qualitatively similar if the predictions
are evaluated using root mean squared error (RMSE), as shown in
Appendix D.
25We also evaluated the comparisons in levels of quality (a discrete
measure). The results were qualitatively similar and are therefore
excluded.
26The 90% confidence bounds of the predicted market shares in
2008–2011 by both models along with the actual observed market
shares are presented in Figure D.1 in the appendix.
27Regional gas prices were available from the U.S. Energy Informa-
tion Administration for Boston, Chicago, Cleveland, Denver, Hous-
ton, Los Angeles, Miami, New York, San Francisco, and Seattle.
28The regression included the top four models in each of the three
automotive categories. The fourth weekly lag of gas price was
used, consistent with the typical 29-day automotive purchase cycle
reported in J.D. Power’s “2008 Auto Buyer Clickstream Study” (J.D.
Power and Associates 2008), but the results are similar using other
lags of gas price. Time fixed effects were excluded because they are
highly collinear with the gas price data (R-square of 0.66).
29We considered and rejected several alternative explanations for
the category-specific results, including regional economic growth
and unemployment rate, concentration in category market shares,
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the range and dispersion of quality estimates across products and
time, correlations in products’ quality levels, and the total number
of quality changes observed in the data.
30We plot the 90% confidence range of the predicted market shares
by both models along with the actual observed market shares for the
in-sample periods in Figure D.2 in the appendix.
31Note that, under each model, the quality predictions were made
based on 1,000 simulations as discussed in Appendix D. For this
exercise, we focus on the multiple-year horizon prediction approach.
We calculate the consumer surplus and firm per-period profits for
each of the 1,000 draws and report the average and the standard
deviation across these draws in Table 6.
32Note that the annual demand idiosyncratic preferencesεi jt pre-
sented in Equation (1) are assumed to follow the same distribution.
We acknowledge this as a modeling limitation to assume that con-
sumers’ weekly and annual demand for automobiles have the same
distribution.
33Market size is defined as the maximum total weekly unit sales
within each year.
34Weintraub et al. (2008) introduced a new equilibrium concept,
oblivious equilibrium, through which dynamic investments can be
solved as single-agent problems when the number of competing
firms is large. However, this approach assumes that no single firm
has influence over the overall market’s evolution. For an application,
see Qi (2013).
35When any firm’s quality is at either bound of the state space, we
adjust the likelihood contribution of that particular observation as
described in Section 3.2.1.
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